
Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 1 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

INTRODUCTION

FORMAT

The format of the Advanced Programming Workshop class is different from the typical Yaskawa training class. In

this class you’ll write an advanced rotary knife application, following this Application Resource Manual, and

working at your own pace. The instructor is available to answer your questions about the material and to check to

be sure you are working on track.

DEMO EQUIPMENT

The vast majority of the program can be tested on the desktop demo. At key points in the development of your

code it will be necessary to test it out on the “real machine”. The real machine is the Rotary Knife / Flying Shear

demo. You are welcome to try your code on the real machine at any time. If you need to use the machine but it is

in use by another student, please make this known to the instructor, but continue working ahead in this

Application Resource Manual.

MATH AND EQUATIONS

This class does require that the student understand quite a few mathematical calculations and motion profile

analysis. However, for the most part, the equations and profile analysis is explained so that the student can

concentrate on incorporating these calculations in the program, rather than spending time developing them. So

save yourself some time by reading ahead a few pages to find these calculations before solving them on your own.

TRAINING ACTIONS

Throughout this document are many headings titled “Training Action”. These may consist of questions to answer,

procedures to follow, or programming tasks to solve. This class is designed for you to “learn by doing”

accompanied by simple, yet accurate descriptions to keep you on track. Please don’t skip over the Training Actions.

They serve as a checkpoint for the instructor to monitor your progress and to be sure you understand the material

before getting too far ahead.

TRAINING ACTION

 Read the application description.

 Ask the instructor to clarify anything that is questionable or unclear.

 Think about how you would use the controller to solve the application

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 2 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

TABLE OF CONTENTS

CONTENTS

Introduction ... 1

Application Description: Rotary Knife .. 4

Expected Motion Profile .. 7

Solution approaches .. 8

Three Incorrect Approaches .. 8

The Correct Approach: Electronic Cam .. 10

Solution Approach ... 11

Starter Project ... 12

Setup .. 12

Homing the demo .. 14

Cam Engage/Disengage .. 15

Running Cam Profile ... 16

Shift Introduction ... 18

Cam Shift Concept overview .. 18

Product Buffer ... 21

Product Buffer Definitions ... 23

Product Buffer Quickstart .. 24

ProductBuffer Execution .. 27

Product Away ... 28

Top-Level Sequence ... 29

First Shift and Engage .. 31

Camming Block Diagram .. 31

First Shift Simplified Example .. 33

Training Action: .. 33

file://Hqfs1/hqdata/GRP_DATA/TRAINING/Classes-Official/Motion/MP2000iec/TRM020-MP2000IEC-APW1%20(Rotary%20Knife)/TRM020-MP2000IEC-APW1%20(Rotary%20Knife)%20RevA.05%20PRELIM.docx%23_Toc322090858

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 3 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

First Shift Equation .. 36

Y_CamIn Execution Zone ... 37

PITFALL: Sensor Location .. 38

Programming: First Shift and Engage .. 39

SFC Actions .. 40

Running Shift ... 42

Shift Zone ... 42

Shift Execution Timing: “Within Range” .. 43

Running Shift Calculation ... 45

Program the RunningShift. .. 46

Last Shift .. 48

Dead Man condition .. 48

Exe_LastShift .. 52

Phase 1 Conclusion .. 53

Phase 2: Internal Cam Table Generation ... 55

Y_CamStructSelect ... 55

CamGenerator ... 56

Cam Tool (software) and CamGenerator (function block) .. 57

Elements of the CamData structure .. 59

Programming: Internal Cam Table Generation .. 61

Phase 3 – Cam Blend ... 62

BlendData Structure .. 64

CamBlend Illustration .. 66

CamBlend: General Requirements for Cam Tables ... 68

Programming: CamBlend ... 69

file://Hqfs1/hqdata/GRP_DATA/TRAINING/Classes-Official/Motion/MP2000iec/TRM020-MP2000IEC-APW1%20(Rotary%20Knife)/TRM020-MP2000IEC-APW1%20(Rotary%20Knife)%20RevA.05%20PRELIM.docx%23_Toc322090880

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 4 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

APPLICATION DESCRIPTION: ROTARY KNIFE

MACHINE EXAMPLES: Any machine that performs a process to a continuous “web” of moving material by means

of a rotary actuator. This workshop will assume the process to be cutting, but the process could also be printing,

forming, sealing, or others.

MACHINE DESCRIPTION AND OPERATION

 Material is moving continuously, in the diagram this is from right to left

 The material is printed with a mark and must be cut on the leading edge of this registration mark with a

tolerance of [±0.001 Inches].

o Even if there is material stretching or slippage, it will be cut at the correct location relative to the

other graphical printing on the material.

 The knife will rotate in only one direction (CW in this diagram) to cut the material while moving.

 The rotary knife is driven by a rotating servo axis, as shown in the diagram, which is controlled by the

MP2000iec.

 This knife is to penetrate a single point on the material as it moves, moving synchronously with the

material throughout the entire cutting cycle, even in the unlikely case that the material were to speed up

or slow down.

 The cutting is “random” in the sense that the registration marks may not be exactly the same distance

apart. They are random to within 1.0 [inches]

 The final product, and therefore the product length must be able to change “on the fly”

SyncAngle 10°

Sensor
StartAngle 180°

MasterCycle (Equivalent to Slave Circumference)

BDC 0° | 360°

SensorDistance

ProductAwayDistance

SyncZone

LockoutDistance

ShiftZone SyncZone

Web Movement External

Encoder

Mark (random)

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 5 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

MECHANICAL SPECIFICATIONS

1. The servomotor that directly drives the rotary knife is a Sigma-2 motor (driven by a Sigma-5 amplifier) and

has a resolution of 8192 [post-quadrature counts / rev]

o Knife diameter is 4.000 [inches], giving a circumference of 4*pi = 12.566 [inches].

2. The controller measures the position of the material using an external encoder. On this demo that

encoder is the master axis.

o The external encoder on the web of material has a resolution of 8192 [post-quadrature counts /

rev]

o One revolution of the external encoder represents 8 [inches] of material movement

3. The sensor is located a relatively long way away from the knife cutting point. The distance from the

registration sensor to the rotary knife bottom dead center is roughly 28.5 [in].

PERFORMANCE REQUIREMENTS

 Cut any length between 5[in] and 10[ft].

 The conveyor travels up to 400[ft/min] = 80[in/sec]

 The material feeds at a speed that may be adjusted by the operator. The material may suddenly slow or

stop altogether due to an unexpected power outage or emergency shutdown. Therefore the knife must

move at the exact speed of the material during the cutting cycle, or else the material will be wasted or the

mechanism could jam.

 The knife must stop smoothly, pointing out of the material while waiting for product.

1

2

3

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 6 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

IMPORTANT MEASUREMENTS

 StartAngle: Blade angle of 180 degrees, pointing up. The knife waits here until the sensor is latched. The

knife will not stop here if another product has already been sensed.

 BottomDeadCenter (BDC): Blade position 360 degrees (= 0 degrees) pointing down. Full cut penetration

at this point.

 SyncAngle: Blade angle in degrees, ±BDC during which the knife must remain synchronized with the

material. Typical ±10 degrees. This SyncAngle can be adjusted based on material thickness.

 SyncDistance: Linear distance of the angle projected by the knife from BDC to first contact point of blade

with material. Will be adjusted based on SyncAngle.

 MasterCycle: Linear distance the material moves per knife rotation, if the knife were to remain

synchronized all the time. This distance is equal to the circumference of the knife.

 ShiftZone, SyncZone: The sync distance defines a zone within the master cycle in which the master can

be shifted or must remain synchronized.

 Sensor Distance: Linear distance from registration sensor to knife BDC

 ProductAwayDistance: Linear distance from sensor to where the knife clears the product. At this

distance the knife is free to adjust speed for the next cut mark.

 LockoutDistance: Filter to reject false latches after the current latched position.

SyncAngle 10°

Sensor
StartAngle 180°

MasterCycle (Equivalent to Slave Circumference)

BDC 0° | 360°

SensorDistance

ProductAwayDistance

SyncZone

LockoutDistance

ShiftZone SyncZone

Web Movement External

Encoder

Mark (random)

SyncDistance

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 7 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

EXPECTED MOTION PROFILE

Before and after the cut, the rotary knife is expected to keep moving, slowing down or speeding up between cuts

as needed. It will stop only if the sensor has detected no more marks. The most critical part of the knife motion

occurs during the cut. The knife must follow the master during the cut. If the master is moving at a constant

speed, then the knife will follow at this same constant speed.

 Case 1: Very distantly spaced. The knife stops at home position between cuts, waiting for another cut

mark to be sensed.

 Case 2: Distantly spaced. The knife keeps moving, slowing down between cuts.

 Case 3: Closely spaced. The knife keeps moving, speeding up between cuts.

For a truly random mark, the knife must work for any combination of the above 3 cases. For example, the very

first cut will by definition follow the acceleration of Case1. After all, the knife was stopped before power was

turned on! Then as marks are sensed, it may alternate randomly between distantly and closely spaced cuts as

the marks are sensed. Eventually no more marks are sensed, and the knife will come to rest again as in the

end of Case1, waiting for the possibility of another mark.

Sp
ee

d

Time

Sp
ee

d

Time

Sp
ee

d

CUT

CUT CUT CUT

CUT CUT
CUT CUT

Time

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 8 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

SOLUTION APPROACHES

THREE INCORRECT APPROACHES

SET THE SPEED ONCE

At first glance, the solution to this application seems simple. Read the speed of the conveyor and move the

servomotor forward at that speed for the appropriate amount of time.

This method, however, does not consider the fact that the motor must perfectly align with an exact position of the

material on the conveyor in order that the cut be made accurately. So some type of algorithm would have to

monitor and match the position of the conveyor with the servomotor. This can be cumbersome, and the

effectiveness is limited.

The possibility also exists that the conveyor could change speed while the motor is moving. The customer has

stated that the speed of the saw must exactly match the speed of the conveyor for the whole time that cutting is

taking place. Therefore, setting the speed once is not sufficient.

UPDATE THE SPEED CONTINUOUSLY

So the simple fix then seems to be to continuously monitor the conveyor speed and update the motor speed to

match it during the critical part of the move. This could be done with a simple program loop that reads the speed

of the conveyor and sets the same speed to the motor.

This approach does work to a limited degree, but it will soon become apparent that the motor is not following the

speed exactly. This is because there is too much delay. The encoder on the conveyor is sending pulses, which

must be converted to speed by dividing pulses by time. Time is necessary to calculate speed, so a time delay is

unavoidable.

Compare this speed-matching problem to the familiar experience of driving an automobile. To match the speed of

another car, a driver naturally tries to maintain a constant distance between cars. It would be far less effective to

match speedometer readings, even if a wireless display of the other car’s speedometer was available. The same is

true in servo applications. If you match position, you will also match speed. But matching speed does not ensure

you will match position.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 9 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

USE ELECTRONIC GEARING

Electronic gearing is designed for just that purpose - to match the motor’s position to that of an external axis. This

external axis is referred to as the master axis. In the case of this application, the encoder on the conveyor is the

master axis. The slave axis is the motor being controlled. If geared properly, the slave will follow the master

exactly.

The approach would then be to smoothly transition into electronic gearing for the time given, and quickly position

back for the next cut. This would ensure that the position is followed during the cutting part of the move. The

problem is that it is very difficult to synchronize exactly. Additionally, there is always a shock if electronic gearing

is engaged while the motor is in motion. Steps can be taken to counteract these problems and make gearing work.

But they end up making program development time consuming and cumbersome.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 10 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

THE CORRECT APPROACH: ELECTRONIC CAM

Gearing and electronic CAM are similar. With gearing, the position of the slave is controlled to be directly

proportional to the position of the master, in proportion to a constant value called the gear ratio. With electronic

cam, the position of the slave is individually controlled according to specific positions of the master rather than at

a constant proportion. These positions are defined in a CAM TABLE. As the master position increases, the slave

position could increase, decrease, or stay the same. If the master is running at a constant speed, the slave

positions can be set to correspond to a desired velocity profile. But if the master were ever to change speed, stop,

or reverse, electronic CAM ensures that the slave motor is always in exactly the right position relative to the

master, regardless of any velocity profile expected from the slave.

With electronic cam, the issue of conveyor speed disappears. It is totally out of the equation. The only reason to

consider the conveyor speed is to calculate an EXPECTED VELOCITY PROFILE for the slave motor. The expected

velocity profile is the velocity profile you expect the slave to have when the master axis moves at a constant speed.

But this profile will not be followed if the master does not move as expected.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 11 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

SOLUTION APPROACH

Use a 1:1 straight-line cam profile. Shift the cam when the master cycle is in the shift zone. Adjust the shift

amount based on the distance between latched positions

Phase1: Automatically control cam engage and shift using SFC logic

Phase2: Calculate the cam table file internally using CamGenerator

Phase3: Use CamBlend for smooth engage and disengage

Phase4: Adjust and measure performance

Cam_Control_SFC

 SFC Decides:

 Which buffered

position to use

 When to Dis/Engage

 When and how much

to shift

External

Encoder

Product Buffer

Store Latched Positions

Sensor to

High-Speed

latch input

43.5

52.7

69.3

0

Engage/Disengage Cam

Engage or Disengage at

specified master position

Shift

Delay or advance slave by

shifting master position

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 12 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

STARTER PROJECT

SETUP

Training Action: Prepare Desktop Demo

 All inputs down except P-OT (SI1) and N-OT (SI2) up to simulate normally closed over-travel sensors.

 MECHATROLINK cables securely connected.

 MECHATROLINK address rotary switch set. Left = 1, Right = 2

P-OT, N-OT up

M-LINK Address

M-LINK Cables

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 13 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

TRAINING ACTION: STARTER PROGRAM OVERVIEW

It is important to send the archive (and not only the .mwt project) so that all data, including the configuration and

the cam table are sent. Servopack Parameters and Absolute Encoder must also receive configuration.

 In Web Server (Login as Admin/MP2300S – case sensitive)

o Project Archive, Browse for “Archive_APW1….zip”, Send to Controller

o Drive Parameters – Write All User Pns

o Reboot

o Alarm A.CC0? (1)Machine operations (2)Drive Pn tab (3)Select Axis (4)Multi-turn Reset (5)Reboot

 In MotionWorks IEC – Pro

o Open/Unzip the APW1Starter.zwt project file to the project folder and RENAME

o Install the latest “Toolbox Installer” from Yaskawa.com

 Benefit: Enables right-click help on the toolbox

 Add the most recent version of CamToolbox and PLCopen Toolbox libraries, delete old

o Open Hardware Configuration and confirm units. Update IP address.

o Make, Download, and Cold-Start, then turn Debug mode ON

 Open the “Controls” POU to see how to use the different switches and to become familiar with the

different POUs of the project.

o Enable both axes (Switch SI3)

o Jog the master (Switch DI2)

o Adjust master speed (View – Watch Window, “Jog” tab)

 80.0 is the application maximum. 5.0 is good for testing.

 Open the Init POU and verify the mechanical constants, comparing to the application description.

QUESTIONS:

 The desktop demo has the Left and Right motor. Which motor is the cam master and which is the slave?

 Open the Hardware Configuration. How many inches does one revolution of the master axis represent on

this desktop demo?

 How is this different than the physical inches per revolution of the master on the machine (Refer to

Mechanical Specifications, p.4)?

 How many degrees does one revolution of the slave represent?

matt_pelletier
Typewriter
xx

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 14 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

HOMING THE DEMO

While homing is not the focus of this application, it is beneficial to home the axes to start at the correct position.

The starter project takes advantage of Yaskawa’s PLCopen Toolbox user library and the Home_Pulse function block

to home to the encoder’s “C-pulse” (sometimes called “marker pulse” or “index pulse”). The relationship to the c-

pulse and the arrow on the disc varies from demo to demo, so a home offset must be set to calibrate the home

position on the particular demo in front of you.

TRAINING ACTION: HOME THE DESKTOP DEMO

1. Open the Home POU (debug mode)

2. Open the Watch window, Home tab, set SlaveAxis.Home.Offset = 0.0

3. Execute the homing routine (DI1)

4. Disable both servos (SI 3) and move the motors by hand to the calibration zero position

Calibration ZERO position

5. Set SlaveAxis.Home.Offset equal to the SlaveAxis.Prm.ActualPosition viewed in the watch window.

6. Enable both servos (SI 3) and home the axes again (DI1) to confirm. The slave axis will stop at the 180 deg

position, pointing “away”

Position after successful homing

7. The demo uses absolute encoders, and so it never has to be homed again. The “real machine” uses

incremental encoders, and so must be homed after every power cycle.

8. The SlaveAxis global variable is retained during power cycle. SlaveAxis.Home.Offset is initialized to a value

of -89.0 (specific to Rotary Knife Demo) only at cold start in the “Cold” system task. Therefore do not do

cold start again on the desktop demo or else you will have to calibrate the home position again.

Start Angle 180°

Home Calibration Angle 0°

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 15 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

ADDITIONAL INFORMATION ON PLCOPEN TOOLBOX “HOME_PULSE”

The Home_Pulse function block uses the “HomeData” input. This input uses the “HomeStruct” datatype included

in the PLCopen Toolbox library. This structure itself is an element to a greater structure called “AxisStruct”. You

can see in the global variables that we have a variable SlaveAxis and MasterAxis each as an AxisStruct, which

means it includes the HomeStruct. Add from the global variables list both SlaveAxis and MasterAxis to visually see

the elements of these data structures. The HomeStruct element is already in the watch window and appears as

MasterAxis.Home and SlaveAxis.Home. Expand it to see the elements of the structure. The Init POU “home”

worksheet loads default values into the structure.

CAM ENGAGE/DISENGAGE

It is critical to understand how the controller engages and disengages the cam. Please do the following on the

demo for hands-on experience.

TRAINING ACTION

 Open the CamInOut POU

 Jog the master slowly with DI2 (or disable the master and move by hand)

 Engage and disengage the cam with DI3 which executes the Y_CamIn block

 Open the watch window to see the master and slave position as you engage and disengage

o Roughly, what is the change in master position over one cam cycle?

o At what slave position does the slave engage and disengage?

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 16 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

RUNNING CAM PROFILE

When we engage the cam, the controller moves the motor according to a simple 1:1 linear cam. This is a cam

profile that behaves in many ways like electronic gearing. The cam table exists on the controller as a CSV file of

master and slave positions (created by Yaskawa’s Cam Tool software). The cam profile looks like this:

As the master goes through its cycle (zero to 12.566 [in]), the slave does one revolution (zero to 360). Once

engaged, you can see the slave is essentially “gearing” to the master at a ratio of 1:1. We call this simple cam

profile the “Running Cam”.

Engage and Disengage

when master is at ½ cycle,

corresponding to slave

angle of 180°

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 17 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

In order for the slave to stop and start at the “up” angle of 180 [deg], the EngagePosition is set to ½ the master

cycle. See the Init POU.

The same is done for the Y_CamOut instruction so that the slave stops in the “up” position.

You’ll notice that the slave quite abruptly starts and stops as it engages and disengages. This will be remedied in

Phase 3 with CamBlend and two more profiles called “RampIn” and “RampOut”.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 18 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

SHIFT INTRODUCTION

It is also critical to understand the concept of shifting the cam master.

TRAINING ACTION: EXECUTE “RUNNING CAM SHIFT”

 Open “Shift_Running” POU

 Run the master slowly, engage the slave, and execute the shift (by toggling DI4)

 Adjust G_RunningShiftAmount

o +9.0, +5.0, +1.0, 0.0, -1.0, -5.0, -15.0, -20.0, etc

 What is the maximum shift allowed?

 Is there a minimum shift? What happens with an extreme negative shift such as -40.0?

CAM SHIFT CONCEPT OVERVIEW

The concept is to shift the master during the running cam profile, either forward or reverse so that it speeds up or

slows down, and returns to the normal cam profile at the required master position so that the knife cuts on the

mark.

The amount of shift required depends on how much shorter or longer the cut spacing is. Think of it this way.

What if there was no shift at all and the knife was simply “gearing” to the linear cam profile? This is the current

condition of the project.

Shifting the slave while the cam is running allows us to shrink or grow this cut spacing. The slave and the cam

block don’t know about this; they just see the master position increasing and respond according to the cam lookup

table. But the raw master position is not changed by shift, and neither is the position of the moving product.

Instead, an intermediate CamMasterShiftedPosition(1501) is created inside the controller for reference.

Cut spacing with no Shift

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 19 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

Consider the following example.

Shift the cam by +1.0 [in] (a forward shift) Cut spacing will be 12.5-1.0 = 11.5[in].

If we shift the cam by -1.0[in] (a reverse shift), then the cut spacing will be 12.5-(-1.0) = 13.5 [in].

Cut spacing 11.5 [in]

Shift +1.0[in]

Cut spacing 13.5 [in]

Shift -1.0[in]

CamShift is accomplished by distributing a

master position offset before the position is

modularized into the “sawtooth” waveform

for the master position lookup. The

Camming Block Diagram is critical to

understanding this process.

Link to Camming Block Diagram by right-

click help on Y_CamShift

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 20 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

TRAINING ACTION

Observe the effect of positive and negative shifting

 What is the length of the part being cut without executing Y_CamShift ?

 What is the mathematical relationship between shift amount, part length, and master cycle?

 What is the shortest part length possible (with present values of Y_CamShift inputs)?

 What happens to the position of the master relative to the slave after a shift?

 Does the slave return to normal speed at the same position?

 Does the “cut point” relative to the master change with every shift?

 If you execute a positive shift “too late”, does it shift on the next cycle?

o The Shift_ExecutionRange worksheet is calculating if there is still enough master cycle left to

complete the shift. Otherwise Y_CamShift would generate error 4398.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 21 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PRODUCT BUFFER

You notice that, you cannot make the slave synchronize with any other point on the master until you shift the

master. If you’ve homed both axes, the slave always engages such that the arrows of the two disks line up… until

you shift. Shifting the master allows you to change the synchronize point. If the product positions were known to

the controller, then we could use calculations to control the shift amount and synchronize the cut to each position.

ProductBuffer from the Yaskawa’s PLCopen Toolbox user library stores axis positions in an array so that several

marks may be captured before the first mark arrives at the knife.

You can see in the above programming concept overview, that Product Buffer is just one component of the

program. Cam Control decides what to do with the position in the buffer. Cam Control is another new POU that

we will begin to write in this section.

The Cam function does not control the slave based on the raw master position, but rather the

CamMasterShiftedCyclic(1502) position. Cam Control will intelligently shift the CamMasterShiftedCyclic(1502)

position when the knife is not cutting, so that the knife rotates slower or faster, and ends up synchronizing with

the mark.

For a 12-minute recorded webinar presentation explaining ProductBuffer, please refer to the following video:

http://youtu.be/SURwLkaeXeE

Cam Control (SFC) decides

what to do with the captured

positions

The ProductBuffer function

block from PLCopen Toolbox

stores captured positions in an

array.

http://youtu.be/SURwLkaeXeE

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 22 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

ProductBuffer automatically captures the “raw” position of an axis at every trigger of the high-speed latch input.

The high-speed input can be configured, but we will use input SI4 (EXT1). The positions are stored in an array, and

works as a FIFO (First In First Out) circular buffer. The “StorePointer” contains the array index (array element

number) where the next position will be stored.

The RegistrationData structure sets the array size, filter, position offset, and specification of which hardware input

is to be used as the high-speed latch input. The “Cam Control” SFC-language program POU, which we will create,

will update the “UsePointer”, used by ProductBuffer to calculate the BufferLevel.

Description of RegistrationData will be explored in the next Training Action.

Array

Index

Captured

Position

[0] 10010.3

[1] 10044.9

[2] 10087.1

[3] 10110.6

[4] 0

[5] 0

[6] 0

StorePointer = 4

UsePointer = 1

BufferLevel = 3

PrevUsePointer = 0

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 23 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PRODUCT BUFFER DEFINITIONS

The controller can’t do anything with the marks until it senses them. So the first step is to implement the

ProductBuffer function block from Yaskawa’s PLCopen Toolbox user library.

ProductBuffer uses the latch input to capture an array of raw master positions. The latch input is connected to the

sensor that detects the products as they move by. The sensor is wired to input SI4 to capture the position of a

servo axis, or DI1 on an LIO card to capture the position of an external encoder. So every time the sensor sees a

mark, the position from that axis is captured into an array.

The product buffer will make it possible to keep track of the master position of the marks on the belt, even if

several of them are sensed before the first mark is cut. This is especially important for an application with a large

distance between sensor and rotary knife.

TRAINING ACTION:

1. In the “StudentPOUs” folder, insert a new LD program POU named “Buffer”, run it in the Fast task, and

insert ProductBuffer from the Edit Wizard.

2. Connect variables as indicated below. You may wish to control G_BufferEnable with input DI5 by adding a

rung to the Controls POU.

3. What is the data type of the variable “G_ProdBufferData” connected to the RegistrationData

Var_IN_OUT?

4. Mark “retain” for G_ProdBufferData so that the values entered retain after warm start.

5. Download Changes.

6. Rename a watch page tab to “buffer” and add G_ProductBufferData so you can see the different elements

of the structure.

How do you decide what task should run

Product Buffer?

Initially you may assume that you need a fast

task so that no latches are missed. The latch

function however operates in microseconds

at the hardware level. Product Buffer only

has to run fast enough to arm and re-arm

the latch faster than the products come in. If

minimum spacing is 5[in] and max speed 80

[in/sec] then the fastest product frequency is

62.5 ms – the 20ms task is fine.

However! We’ll be using G_BufferLevel

output elsewhere in the code and want to

know as fast as possible if another product

has been sensed, so the 2 ms fast task is

appropriate.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 24 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

You can see that the important inputs and outputs of ProductBuffer are all wrapped up within the RegistrationData

Var_IN_OUT. This datatype and usage facilitates the implementation of ProductBuffer . Some of the elements of

this structure act as inputs and other elements act as outputs.

Please read the following explanations for the RegistrationData elements so that you can initialize the input

elements according to the application specifications.

PRODUCT BUFFER QUICKSTART

1. Set BufferSize=10
2. Set Sensor.Bit=1
3. Enable ProductBuffer block
4. Jog the master
5. Flip SI-4 on and off
6. Monitor Result in BufferNonCyclic

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 25 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PRODUCT BUFFER INPUTS

BufferSize – Set the number of latched positions to be stored in the buffer. 5 to 10 is a typical setting, and 100 is

the maximum. It is advantageous to use the smallest buffer size necessary so that it is easy to monitor the buffer

in the watch window. This element must be

set in order for ProductBuffer to run.

Sensor – Defines the high-speed input that will

trigger the position latch. The Sensor element

of the structure is also a structure itself – the

TRIGGER_REF structure. The good news is that

only the BIT element of the TRIGGER_REF

structure is used.

The chart at the right is from the PLCopen help

file for MC_TouchProbe. This shows that the

default, Bit=0, latches on the encoder C-pulse

signal. For a ServoPack master, Bit=1

corresponds to the EXT1 input (SI-4) as the

latch input. For the LIO cards with encoder

input, Bit=1 corresponds to DI-01 on the card.

So in most cases the BIT element is set to 1.

Initialize the Sensor to use SI-4 of the master

axis with the following line of code (in the next

training action).

G_ProdBufferData.Sensor.Bit:=UINT#1;

LockoutDistance – You don’t want extraneous

marks to register another capture. So give a minimum

master distance at which new marks can be sensed again.

As a minimum, LockoutDistance can be set to the

theoretical minimum product spacing, as calculated based

on the MasterSyncDistance. In practice, this value is set

based on the application.

UsePointer – Array index of the latch data to be used in

the application program, ie Y_CamShift block. The value

of UsePointer must be controlled elsewhere in the

program. In this program it will be controlled in the

Cam_Control_SFC program POU. The initial value is

typically zero.

ManualOffset – A small offset may be added to the

captured positions. This value is adjusted for the machine

based on the output of the machine. You could also

simply adjust the sensor distance.

GUIDELINES FOR SETTING BUFFERSIZE

What is the maximum number of marks that could

possibly be sensed and waiting to be “cut”? This

would occur with the closest possible mark spacing.

A longer SensorDistance will require a larger

BufferSize. If the required BufferSize is larger than

100, then the PLCopen Toolbox user library project

must be modified.

Steps to modify:, open the “PLCopen Toolbox”

project, Data Types folder, Toolbox_Data Types,

and find the line LatchBufferArray: ARRAY[0..100]

OF LREAL;. Increase “100” to a suitable number.

We recommend saving the library project under a

new name. Re-MAKE the project. In your

application project, delete the existing PLCopen

Toolbox library, and re-import the updated library

with the new name you have chosen.

 What is the closest product spacing

theoretically possible?

 The length of the master cut

zone

 What is the calculation for the

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 26 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PRODUCTBUFFER OUTPUTS

BufferNonCyclic – the raw master position will be recorded in this array. It is parameter 1016

BufferCyclic – the cyclic master position will be recorded in this separate array. This only applies if the master is

configured as rotary in the Hardware Configuration, and it uses the master cycle defined in the HWConfig. This is

NOT referring to the master cycle of the cam profile. Remember, different slave axes can have different master

cam cycles when camming from the same master. We don’t need this buffer for this application.

Valid – means the buffer is running and all inputs are ok

BufferLevel – number of latched positions in the buffer. If the BufferLevel grows larger than BufferSize, then the

block will stop with an error. BufferLevel = StorePointer – UsePointer. The code will increment UsePointer.

StorePointer – Array index in which the next latch position will be stored. Once a position is latched, StorePointer

automatically advances to the next element in the array.

REGISTRATION DATA NOT USED BY PRODUCTBUFFER

PrevUsePointer – PrevUsePointer is not used by the ProductBuffer block, but is included so that the same

structure can pass all the required information to other blocks provided in Yaskawa’s CamToolbox user library. The

value of PrevUsePointer must be controlled elsewhere in the program. In this program it will be controlled in the

Cam_Control_SFC Program POU. The initial value would typically be set to the last point in the buffer. Use to keep

track of the use pointer’s previous value, ie to find the position of the previous latch. The distance between

latches can be calculated by the difference between the position value at the UsePointer index and the position

value at the PrevUsePointer index.

SensorDistance – SensorDistance is not used by the ProductBuffer block, but is included so that the same structure

can pass all the required information to other blocks provided in Yaskawa’s CamToolbox user library. Even so,

SensorDistance is a noteworthy measurement. It is the distance from the sensor to the location of rotary knife

BDC. Refer to the diagrams in the application description. When the mark moves this far away from the sensor,

the master should have already been shifted by your application code so that the CamMasterShiftedCyclic(1502)

position is zero and a new cam cycle is starting. The SensorDistance can be measured on the machine and is

roughly 28.5 [in].

ProductAwayDistance – ProductAwayDistance is not used by the ProductBuffer block, but is included so that the

same structure can pass all the required information to other blocks provided in Yaskawa’s CamToolbox user

library. Even so, Product Away Distance is an important measurement. It is the distance from sensor at which the

knife has completely finished cutting. Refer to the diagrams in the application description. When the mark moves

this far away from the sensor, your application code will increment the UsePointer and PrevUsePointer. The exact

ProductAwayDistance can be calculated based on the SensorDistance and the SyncAngle, or can be set arbitrarily

to a value greater than SensorDistance.

SensorOffset - SensorOffset is not used by the ProductBuffer block, but is included so that the same structure can

pass all the required information to other blocks provided in Yaskawa’s CamToolbox user library. Intended use is

to calculate the remainder of master cycles. This will be accomplished in this application using SensorDistance

instead of SensorOffset.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 27 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PRODUCTBUFFER EXECUTION

Test the operation of the ProductBuffer function block

TRAINING ACTION:

 Initialize all five of the input elements of “G_ProdBufferData” in a ST POU.

Detail for initializing G_ProdBufferData

 Insert a new ST code worksheet named “Buffer” into the Init POU

 Initialize the five input elements of G_ProductBufferData using function key F5

 Example: G_ProdBufferData.UsePointer:=INT#0;

 Remember to use F5

 Warm start is required for the Init POU to run

 Enable ProductBuffer function block

 Toggle SI4 on the demo and confirm operation

 Add G_ProdBufferData.UsePointer to the watch window. Manually change the value and observe BufferLevel

 Make changes as required to the Init.Buffer worksheet so that the buffer will operate properly after warm

start.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 28 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PRODUCT AWAY

After the master has jogged a distance of ProductAwayDistance, then the current latched “product” is out of the

picture and the code can deal with the next product. Every position latched in the ProductBuffer has a

corresponding ProductAwayPosition, which can be immediately calculated by adding the ProductAwayDistance to

the position stored in the buffer.

TRAINING ACTION:

Use the following questions as a guide to generate a line (or 2 lines) of ST code to calculate the

ProductAwayPosition for a given position captured in the buffer.

 If the ProductAwayDistance is 30.0 [in] and a position is captured in the buffer at master position 10044.9

[in], what is the the ProductAwayPOSITION?

 What is the syntax to access the data stored at index UsePointer=1 for this array?

o Example: IEC61131-3 Syntax to access the data stored at array index UsePointer=1 for an array

named “MyArray” is MyArray[1]. Notice the square brackets. The array used by ProductBuffer

is an element of the G_ProdBufferData structure, and it is named “BufferNonCyclic”. The array

index for the current position in use (number within the square brackets) can be replaced by a

variable. What is the variable used by ProductBuffer?

 Write an equation of pseudo-code to calculate the ProductAwayPOSITION.

SyncAngle 10°

Sensor
StartAngle 180°

MasterCycle (Equivalent to Slave Circumference)

BDC 0° | 360°

SensorDistance

ProductAwayDistance

SyncZone

LockoutDistance

ShiftZone SyncZone

Web Movement External

Encoder

Mark (random)

A rray

In d e x

C ap tu re d

P o sitio n

[0] 10010.3

[1] 10044.9

[2] 10087.1

[3] 10110.6

[4] 0

[5] 0

[6] 0

StorePointer = 4

UsePointer = 1

BufferLevel = 3

matt_pelletier
Line

matt_pelletier
Typewriter
SyncDistance

matt_pelletier
Typewriter
360 = 12.56610 = syncDist

matt_pelletier
Typewriter
G

matt_pelletier
Typewriter
10074.9 (add 30 in)

matt_pelletier
Typewriter
ProductAwayPOSiTION=MyArray[1]+ ProductAwayDistance

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 29 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

TOP-LEVEL SEQUENCE

While any of the programming languages could be used, the SFC language lends itself well to the sequence

involved for controlling pointers, engaging the cam, and shifting. While the SFC controls the top-level logical flow,

the working-level code is contained with the individual actions and transitions, programmed in ladder, function

block, or structured text.

If you think about the product as they move past the sensor and then away, it is a very sequential process.

This sequence can be expressed in SFC. To the right of each step are the actions which can happen at that step.

The transitions that connect the steps define the condition that must be true before progressing to the next step.

1: Ready and waiting

for a mark

2: Waiting for ProductAway 3: Update Pointers

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 30 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

TRAINING ACTION:

Control the increment of UsePointer and PrevUsePointer in the application code

 In the “StudentPOUs” folder, create a new SFC Program POU named “Cam_Control_SFC” and run in Fast task

 Construct the SFC according to the previous illustration

o EN/ENO can be removed in the Objects menu or under Extras-Options-GraphicalEditor

o Code for the Calc_AwayPosition action can be accomplished in ST based on the pseudo-code

equation in the previous Training Action

o The Read_MasterPos action a simple one-function-block action using MC_ReadActualPosition

o The code for the PointerUpdate action is given below

 If you don’t know how to get started with an SFC POU, please refer to the pre-requisite for this class,

eLM.MotionWorksIEC.01.ProSFC eLearning module, available on YouTube at http://youtu.be/OzAxCNoGbt0

 Verify operation of the code by jogging the master and toggling the latch input SI4

PointerUpdate

http://youtu.be/OzAxCNoGbt0
matt_pelletier
Oval

matt_pelletier
Oval

matt_pelletier
Oval

matt_pelletier
Oval

matt_pelletier
Oval

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 31 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

FIRST SHIFT AND ENGAGE

Right now we can engage the cam and it will blindly cut parts of length equal to the knife circumference,

12.566[in]. We can disengage the cam and the knife will stop pointed up at the 180 ° mark. We also have the

buffer running and so we’re able to keep track of the positions of the products as they pass the sensor, and then

move “away” past the sync zone. But these two operations at this point are not connected in any way. We have

to make the knife engage such that it will hit the first mark, not just engage at the next master cycle. And then we

have to make the knife speed up or slow down in between cuts, depending on the spacing between products. As

previously discussed, this can be accomplished by using a separate Y_CamShift block. The first Y_CamShift block

will be applied before the cam engages so that when it does engage, it will line up with a mark. The second

Y_CamShift block will be applied continuously between cuts while the cam is engaged, thus affecting the observed

speed of the rotary knife. Finally, a third Y_CamShift block will “undo” all the previous shifting so that the whole

sequence can start over.

Y_CamShift help links to the Camming Block Diagram that describes how Y_CamShift fits into the electronic

camming algorithm. It is worthwhile to examine and understand this diagram. In order to do so, please refer to

this diagram and answer the following questions.

CAMMING BLOCK DIAGRAM

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 32 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

TRAINING ACTION:

 What is the name and parameter number of the position input used by the Cam Table Lookup Function?

 What is the name and parameter number of the position input captured by ProductBuffer? (Open the

block and see the code)

 What is the name and parameter number of the position read by MC_ReadActualPosition?

Notice that the raw axis position, CamMasterPosition(1500) is preserved for reference. But the master position is

compensated, shifted, and finally modularized into the cyclic “saw tooth” waveform. The saw tooth waveform,

CamMasterShiftedCyclic(1502) is used by the cam table lookup function, which ultimately controls the slave. This

means that as we use Y_CamShift in real time, both the saw tooth and the slave itself will be affected in real time.

This way, compensation for random spacing between parts can be achieved without disengaging the cam.

While the machine is running products, the concept is to shift the master during the running cam profile, either

forward or reverse so that it speeds up or slows down, and returns to the normal cam profile at the required

master position so that the knife cuts on the mark. But there is no “spacing” for the first cut. So there has to be an

initial shift before the first cut to get everything started off right.

What must be known in order to perform the initial shift be so that the knife will cut on the mark?

In the end, there will be 3 individual Y_CamShift blocks. We will implement these in the code one by one.

1. First shift (immediate shift before engage)

2. Running shift (during shift zone to compensate for random product spacing)

3. Final shift (immediately unshift after disengage)

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 33 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

FIRST SHIFT SIMPLIFIED EXAMPLE

The first cut is special. The buffer was empty, so the PrevUsePointer data is empty, and it makes no sense to

calculate the part spacing. The cam is not engaged; the slave is disengaged from the master. The master is

moving, but the slave is not. We need to engage the cam such that the slave hits that first latched position. How?

Let’s look at what’s going on graphically

Consider a simplified version of our application with “easy” integer numbers. Let’s say the CamMasterCycle(1512)

is 10 [in] and the sensor is measured at 34[in] from the knife BDC. Additionally, the buffer is empty and we’re

waiting for that first latched position. The cam is a 1:1 profile – as the master moves from 0 to 10[in], the slave

moves from 0 to 360 degrees. The slave engages/disengages halfway through the master profile at

CamMasterShiftedCyclic(1502) position 5[in], leaving the slave pointing up at 180 degrees. The master is moving

the material, and is at position 144[in]. This diagram IS to scale.

TRAINING ACTION:

It is beneficial to think of the master position as being read at just ONE reference point on the physical machine. In

this case, it makes sense to use the latch sensor as that reference point.

 What is the current value of CamMasterPosition(1500) according to this diagram?

 What is the current value of CamMasterShiftedCyclic(1502) position according to this diagram?

In this diagram, you can see that the master position is 144, but the saw tooth CamMasterShiftedCyclic(1502)

position used for the cam function block is 4. Refer to the Camming Block Diagram.

140 150 160 170 180 190

SensorDistance=34

to Knife BDC

0

0

0

0

CamMasterShiftedCyclic(1502)

CamMasterPosition(1500)

CamMasterShift(1511) = 0

Direction of Travel

Read the position at

the sensor location

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 34 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

The master keeps moving and latches a product at CamMasterPosition(1500) = 154[in]

TRAINING ACTION:

 Where will the knife be oriented at the start of the cam cycle (CamMasterShiftedCyclic(1502) = 0)?

 Which values of CamMasterPosition (1500) correspond to the start of a cam cycle?

 Will the knife cut on the mark?

At first glance, you might think that the mark has to land on one of the multiples of the master cycle in order to cut

without a first shift. But that’s not true; the sensor distance must be considered. Fast-forward the diagram to the

point when the mark reaches BDC. Refer to the diagram and answer the questions.

QUESTIONS – LATCH AT BDC:

 What will be the CamMasterPosition(1500)?

 What will be the CamMasterShiftedCyclic(1502)?

154

0

0

0

140 150 160 170 180 190

SensorDistance=34

to Knife BDC

154

0

0

0

140 150 160 170 180 190

SensorDistance=34

to Knife BDC

Read the position at

the sensor location

Read the position at

the sensor location

CamMasterShiftedCyclic(1502)

CamMasterPosition(1500)

CamMasterShiftedCyclic(1502)

CamMasterPosition(1500)

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 35 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

From the previous illustration, we can see that the mark will be missed, as the next cam cycle comes at position

190, not 188. “If only the mark had been sensed at 156 or 146 instead of 154; then the knife could have cut it!”

But… the cam lookup table uses the CamMasterShiftedCyclic(1502) position. We can “trick” the cam lookup

function and first shift the master by +2 [in] or by -8[in] so that the mark lines up with the start of a new master

cycle.

The diagram below shows a shift of +2[in] (or -8[in]), with the original un-shifted CamMasterShiftedCyclic

sawtooth in gray.

If we would shift the CamMasterShiftedCyclic(1502) position by +2[in] (or -8[in]), then the first mark would be at

BDC when the CamMasterShiftedCyclic(1502) position = 0, the start of a new cam cycle.

154

0

0

0

140 150 160 170 180 190

SensorDistance=34

to Knife BDC

Shift of +2

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 36 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

FIRST SHIFT EQUATION

Obviously, the shift of 2 will not work in every case. There is a mathematical way to determine ahead of time how

much the shift will be. How did we arrive at a shift of 2? The following mathematical formula describes the above

example for the general case.

Latched position + SensorDistance = first BDC master position.

This is what the master position will be in the future, when the mark is directly at BDC of the knife

FirstShiftAmount = -1 × REM[(LatchedPosition+SensorDistance)/MasterCycle]

“REM” means “remainder”.

REM can be found in the Edit Wizard under the Yaskawa_Toolbox user library.

Examples for case of SensorDistance=34, MasterCycle=10

 LatchedPosition=154

o FirstShiftAmount= -1 × REM[(154+34)/10]

 =-1 × REM[(18 with remainder 8]

 FirstShiftAmount = -8

 LatchedPosition = 156

o FirstShiftAmount =-1 × REM[(156+34)/10]

 =-1 × REM[(19 with remainder 0]

 FirstShiftAmount =0

 LatchedPosition = 158

o FirstShiftAmount =REM[(158+34)/10]

 =-1 × REM[(19 with remainder 2]

 FirstShiftAmount =(-2)

TRAINING ACTION

 What conditions must be true in order for the controller to be able to make this calculation?

 What conditions must be true in order for the controller to execute the First Shift?

 What conditions must be true before the cam is engaged?

matt_pelletier
Typewriter
xxxx

matt_pelletier
Typewriter
Math

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 37 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

Y_CAMIN EXECUTION ZONE

If you execute Y_CamIn immediately, what will happen? ANSWER: the cam is set to engage when

CamMasterShiftedCyclic(1502) position =(master cycle / 2). In this simplified example, that would be at position

5[in]. The cam would engage the first time that CamMasterShiftedCyclic(1502) position=5. This means we can’t

execute Y_CamIn immediately because it would engage too soon and miss the mark by one cycle. More cycles

have to go by before we tell it to engage. The code has to wait to execute Y_CamIn.

Use the following diagram to answer the questions below.

Execute Y_CamIn when the mark is >1/2 master cycle away from BDC, but still < 1 ½ master cycles.

QUESTIONS:

 What is the lowest(first) theoretical CamMasterPosition(1500) at which the cam could be engaged?

 What is the highest(last) theoretical CamMasterPosition(1500) at which the cam could be engaged?

 What CamMasterPosition(1500) is in the “middle of the zone”?

154

0

0

0

SensorDistance=34

to Knife BDC

Shift has been calculated and applied, but it’s still too

soon to execute Y_CamIn

1/2 Cycle

1.5 Cycles

Earliest master position to execute Y_CamIn.

CamMasterPosition(1500)>173 (there is an engage window!)

Latest master position to execute Y_CamIn.

CamMasterPosition(1500)<183 (there is an engage window!)

Execute Y_CamIn

When mark is in

this range

140 150 160 170 180 190

140 150 160 170 180 190

140 150 160 170 180 190

Read master position

at the sensor location

Desired Engage Position

Desired Engage Position

Possible Engage Positions

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 38 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

Continuing the simple example you see that Y_CamIn could be executed when the CamMasterPosition(1500) is

between 173 and 183. You probably wouldn’t want to pick 173 because the EngageWindow input on the block

may be such that the cam engages a cycle early. You probably wouldn’t want to pick 183 either, because at faster

speeds, execution delays may cause the mark to be missed and the cam would engage one cycle late. So the sweet

spot is probably somewhere in the middle; when the CamMasterPosition(1500) = 178. Execute Y_CamIn at

position 178, it will engage at 183, and the next cycle will begin at 188 with knife and mark both at BDC.

PITFALL: SENSOR LOCATION

This discussion opens up the critical point of Sensor Location. The sensor must NOT be located too close to the

knife! A distance of 2.5 master cycles is a good rule of thumb.

 If the sensor is too close to the “action”, then at high speed any controller doesn’t have enough time to react

before the fast-moving mark is at the cut point. Classic physics still applies and Time=Distance/Speed cannot be

avoided. A short distance and high speed gives very little time for any servo system to react.

The sensor distance must be great enough to allow the cam to both disengage, and then engage again for a new

mark. This situation occurs when the last product in the buffer is about to be cut. We have not yet discussed the

“Running Shift” yet, but as a little preview, the controller has to make the decision to disengage during the current

cycle if there are no more products. When we use CamBlend, it will require two complete master cycles to

disengage and engage. But if during that cycle, another product is latched in the buffer, the cam still has to

complete the disengage cycle, and must be able to complete a new engage cycle to line up with the new mark.

The entire time those two cycles go by, that latched product is getting closer and closer to BDC. So the sensor

must be AT LEAST 2 master cycles away. Currently the slave disengages abruptly and could reengage immediately

within the same cycle, but once CamBlend is implemented, It will require one master cycle to disengage, and

another master cycle to engage again.

On the other hand, if the sensor is too far away from the “action”, then inaccuracies (stretch, slippage) may have

accumulated once the latched product gets to BDC. Also a very distant sensor means that many products will be

buffered, which for some machines implies the possibility of wasted product in an E-stop situation.

Optimal position to execute Y_CamIn is in the “middle of the

zone”. CamMasterPosition(1500) = 178 in this example

154

0

0

0SensorDistance=34

to Knife BDC

140 150 160 170 180 190
 1 Cycle

Desired Engage Position

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 39 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PROGRAMMING: FIRST SHIFT AND ENGAGE

TRAINING ACTION:

 The CamIn_Position for the simplified example was 178 based on:

o Latched Position = 154

o Sensor Distance = 30

o Master Cycle = 10

 What is the mathematical equation that defines CamIn_Position?

 Based on the above discussion, what two major transitions occur in the sequence between Ready and

Away on the Cam Control SFC in order to implement the first shift?

The following bullet items are a specific list of what has to happen between Ready and Away. Each can be

represented in the SFC code as either an ACTION or TRANSITION. There is some flexibility with the SFC language

regarding the way in which actions and transitions can be used. But generally, the action is the “doing” of

something, and the transition is the “waiting” for some other event to happen. According to this guideline, the

bullet items that “calculate” or “execute” constitute actions. The “waiting” bullet items constitute transitions.

 Calculate shift amount for FirstShift

 Calculate position at which to execute Y_CamIn (CamIn_Position)

 Execute FirstShift

 Wait for confirmation that FirstShift has completed

 Wait for Y_CamIn execution position to arrive

 Execute Y_CamIn

 Wait for confirmation that cam is engaged

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 40 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

TRAINING ACTION:

 Add functionality to the existing SFC code to execute the First Shift.

 Use this SFC as a guide, and create the required actions and transitions.

SFC EDITING TIP: Click on the transition below the Ready step, then “Create step-transition sequence”

NOTE: SFC executes all actions associated with a step simultaneously. It does not first evaluate the actions at the

top of the step before applying the result to other actions in the same step. Therefore it is important to calculate

the values (for FirstShiftAmount and CamIn_Position) in a separate step (Calculate) before they are used as inputs

in the following step (FirstShift).

SFC ACTIONS

CALC_AMT_POS:
FirstShiftAmount = -1 × REM
((LatchedPosition+SensorDistance)/Master
Cycle)

CamIn_Position = LatchedPosition +
SensorDistance - MasterCycle

EXE_FIRSTSHIFT:
Implement Y_CamShift block for
immediate shift by calculated amount. See
next page.

READ_MASTERPOS:
Same action as Away step

G_CAMINEXE: the existing variable to
execute Y_CamIn from CamInOut POU.
Note: remove control with DI-3 switch.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 41 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

EXE_FIRSTSHIFT ACTION

 The EXE_FirstShift action contains its own Y_CamShift block.

 Do NOT adjust the Y_CamShift block in the Shift_Running POU. It will be used for the running shift in the next

section.

 The first shift is to be executed immediately, so set the AdjustMode=ElapsedTime with Duration 0.

 FirstShift.X is the special “step.x” bit which turns on when the step is active and off when not active.

 Run, test, troubleshoot your code. Use debug mode and verify that each step is working as expected.

 It should line up with the first mark. Subsequent marks will be ignored, but you can still manually execute the

running shift.

 Warmstart the controller to test the first cut more than once.

 Keep your hand on the jog button so you can stop and start the master, “freezing time” so you can verify and

troubleshoot your code.

 Adjust code in “Controls” POU to bypass DI-3 (ie, delete the ladder rung).

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 42 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

RUNNING SHIFT

The code as it stands now lines up the first mark, but then continues camming without shifting to accommodate

the positions latched in the buffer. The next step is to apply a shift to the cam while it’s running – but not while it’s

cutting.

The concept is to shift the master during the running cam profile, either forward or reverse so that it speeds up or

slows down, and returns to the normal cam profile at the required master position so that the knife cuts on the

mark.

SHIFT ZONE

Synchronization is lost between master and slave during the shift. Synchronization must be maintained during the

cut. So there are effectively two zones in the rotary knife; the “sync zone” and the “shift zone”. The shift must

take place inside the shift zone only so that the knife remains synchronized during the cut.

An example of the expected slave speed profile during different running shifts is shown below. The shift zones are

highlighted.

Notice how the expected speed is constant during the cut, but slows down (Fwd Shift) or speeds up (Rev Shift)

outside the sync zone.

The diagram below corresponds to the same example, but shows position instead of speed. The dotted line shows

the “normal” un-shifted path that the slave would have followed. The solid line shows the path of the slave as it

follows the master during a shift.

Notice that the slope of the line returns to the original slope after the shift is complete. This corresponds to the

speed matching sync zone.

Sl
a

ve
 P

o
si

ti
o

n

CUT

Fwd

Shift

CUT CUT

Fwd

Shift
Rev

Shift

CUT

Sp
ee

d

CUT CUT CUT CUT
Fwd

Shift

Fwd

Shift

Rev

Shift

0° 0° 0° 0°

time

time

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 43 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

Y_CamShift “WithinRange” adjust mode is designed for this type of situation. The slave has a Sync Zone and a Shift

Zone per slave cycle, and this corresponds to a master sync zone and shift zone per master cycle (in master units).

Y_CamShift will shift the given amount during the defined shift zone. The StartPosition and EndPosition inputs

refer to the CamMasterShiftedCyclic(1502) position.

 The start and end position of the master could be calculated in different ways. A simple method is to use a

relative proportion of the slave sync angle. For example, if the slave sync angle is mechanically ±10 degrees out of

a full rotation of 360 degrees, and the full master cycle is 12.566 [in], then the same proportion is

 Sync Distance = 10/360*12.566 = ±0.349[in].

TRAINING ACTION

 Is the Shift Zone at the ends of the master cycle or in the middle? Refer to the diagram below.

 Based on the above proportional calculation for sync distance, what CamMasterShiftedCyclic(1502)

positions mark the start and end of the shift zone? Give values.

 Edit the Init.Mechanical POU and update to calculate the following such that they will update if the slave

synchronization angle is changed in the future.

o G_SyncDistance

o G_ShiftStart

o G_ShiftEnd

SyncAngle 10°

MasterCycle (Equivalent to Slave Circumference)

BDC 0° | 360°

ShiftZone SyncDistance SyncDistance

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 44 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

SHIFT EXECUTION TIMING: “WITHIN RANGE”

Y_CamShift set to “WithinRange” performs the shift when CamMasterShiftedCyclic (1502) is between the

StartPosition and EndPosition. It is possible, however, to execute the Y_CamShift block when the position is in this

range, but it’s too late in the master cycle for the shift to be performed. It is also possible that the PhaseShift

amount is simply too high and therefore impossible to be completed within the shift zone. If either of these

conditions exists, the block will fault with error 4398.

The starter program has a bit of code that monitors CamMasterShiftedCyclic (1502) and ensures Y_CamShift will

execute successfully, preventing the possibility of error 4398 and producing a “RunningShiftAllowed” bit.

At this point in the program, this concept is not critical because the SFC won’t let the running shift execute until

the product is away – always corresponding to a CMSSP greater than zero. But at faster speeds the scan time

becomes more important, and it may be beneficial to shift at the earliest execution point.

CUT CUT CUT CUT

CamMasterShiftedCyclic

Position

Max PhaseShift

StartPosition EndPosition

MasterCycle

PhaseShift (amount)

Latest Execution Point:

Instantaneous shift

Earliest Execution Point:

Shift at next StartPosition

Sl
a

ve
 P

o
si

ti
o

n

Corresponding

ProductAwayPosition

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 45 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

RUNNING SHIFT CALCULATION

After the First Shift has been executed, the cam engages, and the first product is synchronized with the knife, it’s

time to look at the spacing to the next product and execute the running shift automatically. This can all be

calculated and executed immediately while the knife and product are synchronized, because the shift will not

begin until the CamMasterShiftedCyclic(1502) position is “WithinRange”. It is important to initiate these

calculations and executions as soon as possible, because at high speeds, one more controller application scan can

translate into a significant distance moved.

Consider the following example to calculate the RunningShift based on the simplified example with 10.000 [in]

master cycle “normal” un-shifted cut length

Buffer Element LatchedMasterPosition ProductSpacing RunningShift Comment

0 154.0 -NA- first cut -NA- first cut Use “First Shift” equation

1 163.9 9.9 0.1 Small forward shift

2 171.4 7.5 2.5 Larger forward shift

3 191.9 20.5 -10.5 Part is long, slave slows down

4

The shift amount is simply how much the product spacing deviates from the default “normal” product spacing.

The default product spacing is the master cycle. The master cycle is set equal to knife circumference.

At this point we are going to make one huge assumption – the buffer will always have another product. The next

section will deal with disengaging when the buffer is empty.

TRAINING ACTION:

 Express “Product Spacing” as a mathematical equation based on “current latched position” and “previous

latched position”.

 Express “RunningShift” as a mathematical equation based on Product Spacing and MasterCycle.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 46 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PROGRAM THE RUNNINGSHIFT.

Right now the program is a single SFC string that takes us from the top with nothing in the buffer, to the bottom

when the product has moved away. Then the SFC jumps back to the beginning. But as it stands now, it will

attempt to execute the first shift again. We could keep inserting more steps and attaching some of the same

actions, but instead we can make a divergent path.

TRAINING ACTION:

 Remove DI4 from the controls POU

 Update the SFC as illustrated

o Add a divergent path after READY to a new step called Running Shift

o Update the transition to FirstShift to be sure the cam is NOT in sync

 Program the Running Shift Calculation in the Calc_RunShiftAmt action in ST

 See the SFC Editing Tips on the next page

 To test the code (warm start as necessary)

o Enable the buffer and start jogging the master

o Toggle SI4 at a steady rate

 Toggle 1x per master revolution, 2x, 3x etc

 Toggle ever 1.5 revolutions, 2, 3 etc

o Stop the master and jog slowly to catch the SFC at each step

matt_pelletier
Oval

matt_pelletier
Typewriter
G_RunShiftActive

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 47 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

SFC EDITING TIPS

Create a divergent branch (in Version 2.x)

 Control-click the starting and ending transition

 Click the button “insert SFC branch”,

 Move the new transition to the desired location

 Highlight the new transition

 Click on the button “create new step-transition sequence”

Add Ladder to a transition (in Version 2.x)

 Change transition property to “direct connection”

 Add the contact and power rail in an open white space

 Select the ladder assembly and move to connect to the transition node

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 48 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

LAST SHIFT

At this point the fundamentals are in place and products can successfully go through the process. However, you’ll

notice that if the product spacing is very great, then the negative shift is very great. A large negative shift causes

the knife to move backwards. While a small amount of reverse motion in the knife may be acceptable in some

applications, most often it is not.

DEAD MAN CONDITION

So there comes a certain decision point at which it is simply better to disengage the cam and start the sequence

over once a new product is latched. This decision point is affectionately referred to as the “dead man position”

It comes down to two distinct scenarios at which it is better to cam out and start over.

1. Scenario 1: You’ve started to cut the last product in the buffer; there are no new products yet.

2. Scenario 2: The distance between the latched positions is too large and will cause knife reversal.

Scenario 2 can be avoided by strategically placing the latch sensor close enough to the cut point (but not too

close!). As discussed earlier, the sensor “sweet spot” placement is 2.5 master cycles away. This application

therefore leaves us with Scenario 1 only.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 49 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

DISENGAGE AND “UNSHIFT” AFTER DEAD MAN CONDITION

If the Dead Man condition is true, then it’s time to CamOut. But there is one clean-up action to take care of before

starting over. This is to “undo” the current shift amount that has accumulated. Fortunately, the cumulated shift is

stored in the controller as parameter 1511. Remember the Camming Block Diagram.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 50 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

CHOOSE THE DEAD MAN DISTANCE

The dead man distance is a “point of no return”. You have to decide to stop the knife even though it is possible

that another product is just about to be latched and you could have kept the knife running. But it’s ok if this

happens; if the latch sensor is far enough away, then you have time to CamOut and CamIn again right away.

Y_CamOut stops the knife. Y_CamOut disengages at the predefined position (1/2 master cycle). So the block must

be executed some distance before the disengage position. Later we’ll use CamBlend to “ramp out”, and this

method requires one complete cycle (disengaging at master position zero rather than ½ master cycle). So to

accommodate this, execute Y_CamOut before the beginning of the master cycle during which the slave will

disengage. How much before depends on factors such as the task interval setting and the speed of the master. A

higher task interval and higher master speed means that more distance is covered each application scan, and so if

you wait too long you’ll miss it!

This dead man distance can be chosen relative to the CamMasterShiftedCyclic (1502) position, or it can be more

directly measured as a raw distance from sensor to point of contact with the knife, or some other arbitrary

distance from the sensor. The latter is easier to illustrate, and is the approach used here.

Integration of a specific DeadManPosition for a given position capture in the buffer is very similar to that of

ProductAwayPosition You calculate the future position and just wait for it to pass by.

Each product will first pass the Dead Man position, and then the Product Away position. But the product is only

“dead” when there is not another product in the buffer when the current product passes by it’s specific

DeadManPosition.

140 150 160 170 180 190

Dead Man Distance - may require adjustment

Product Away

Desired disengage Position

Cam Blend will engage and

disengage at

CamMasterShiftedCyclic = 0

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 51 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

TRAINING ACTION:

 Create and initialize a new variable G_DeadManDistance

 Create the SFC as shown below

o Tips on next page

o New Actions

 Calc_DeadManPos

 EXE_LastShift

 Use MC_ReadParameter to find the current shift amount in the EXE_LastShift action

 When it looks like it’s working, transfer the project to the Rotary Knife Demo for final testing.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 52 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

EXE_LASTSHIFT

After the cam is disengaged, the cumulative shift amount must be cleared to zero by “un-shifting”.

SFC EDITING TIPS

Insert a Step after an alternate convergence (in Version 2.x)

1. Click on the convergence line

2. Click “Create Step Transition Sequence”

Create a divergent branch (in Version 2.x)

1. Control-click the starting and ending transition

2. Click the button “insert SFC branch”

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 53 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PHASE 1 CONCLUSION

TEST THE COMPLETED PROGRAM ON THE DESKTOP

DEMO UNDER SEVERAL CONDITIONS

 One latch only – does it cut just once?

 Fast latches / short parts? Slow latches / long parts?

TRANSFER PROJECT TO THE ROTARY KNIFE DEMO

 Rename the Project

 Update IP address (project and PC) for the Rotary

Knife Demo controller

 Go Online with Hardware Configuration, import

configuration from controller, Online Save, Reboot

 Rebuild Project, Stop, Download, Coldstart (cold start

resets all retain variables to initial values)

 Verify home offset is -89.0

 Home, Jog, Enable buffer … and hope it works!

HIGH-SPEED TEST

Increase the jog speed gradually to 80 ipm and even 100 ipm. Use the high-

speed camera to see if the cuts are accurate. Eventually the jog speed will be

too high and something will stop working.

 We use the Casio EXILIM EX-ZR100 point-and-shoot, up to 1000 FPS

(96x240 resolution), $300 USD http://www.casio-intl.com/asia-

mea/en/dc/lineup/#a0

http://www.casio-intl.com/asia-mea/en/dc/lineup/#a0
http://www.casio-intl.com/asia-mea/en/dc/lineup/#a0

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 54 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PREVIEW REFINEMENTS FOR THE NEXT PHASES OF DEVELOPMENT

1. Internal Cam table generation

a. For a simple linear cam like this one it may not seem like it’s worth it to generate the cam

internally. But once you see how to do it, it really increases the flexibility. For example, if you

think about it, the cam profile technically shouldn’t be a simple 1:1 linear cam during the cut.

The line speed only matches the knife speed at BDC. Out of this range there is a sinusoidal

component to the speed to compensate for the angle of the knife. If the cam table is generated

internally, you have full access to an infinite number of custom cam profiles.

2. Cam Blend

a. A limitation with the current solution is that the knife quite abruptly starts and stops. While this

is not a big deal for a small inertia disc on the training demo, on a real machine this can really be

a large mechanical jolt, leading to increased downtime and power consumption. So why not

start and stop nice and smooth? Cam blend allows you to do just that by automatically swapping

3 different cam tables (which can be generated internally); one for engaging (RampIn), one while

you’re running (Running), and another to disengage (RampOut).

3. Adjustments

a. You also may notice (using the high-speed camera) that the cuts begin to lag as the machine

speed increases. You can adjust the tuning and scan compensation parameters so that this

doesn’t happen anymore.

b. We have not even mentioned what to do if the machine experiences an estop condition. How

could you get back in sync without wasting product? The CamBlend function block has an input

to make this easy.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 55 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PHASE 2: INTERNAL CAM TABLE GENERATION

The next step in the refinement of this working application is to generate the cam table internally instead of using

a CSV file generated by Yaskawa’s CamTool software.

Y_CAMSTRUCTSELECT

You can see in the starter program “Cam In OUT” POU that a static cam table is saved in the controller as a CSV file

named “RunCam1.csv”, and is given an ID number by Y_CamFileSelect.

The cam data can just as easily be stored in a variable and accessed using Y_CamStructSelect. The variable must

have the datatype Y_MS_CAM_STRUCT. The variable will be loaded with master and slave positions using the

CamGenerator function block.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 56 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

TRAINING ACTION:

 Create a copy of the CamInOut POU (for reference, do not use)

 Delete the Y_CamFileSelect block from the original CamInOut POU

 Create a new LD program POU called “CamCalc” in Student POU folder

 Create a DEFAULT task named “Bckgnd” and insert a program instance of CamCalc

o The Default task type may be used because the calculation may take a relatively long time and

does not have to be completed repeatedly

 Add CamGenerator and Y_CamStructSelect block to the CamCalc POU as illustrated below

 Make , download, warmstart

 Pull up a fresh watch window tab and add G_RunningCamData and G_RunningCamTable to the watch.

CAMGENERATOR

CamGenerator uses the CamData structure to calculate a complete cam table and then loads the table into the

CamTable structure. CamData is the input, and CamTable is the output. These variables are implemented in the

function block as Var_IN_OUT for efficient memory usage. The CamData input has the datatype

“CamSegmentStruct”. This datatype is only available when the project includes Yaskawa’s CamToolbox user

library. The CamTable variable has the datatype “Y_MS_CAM_STRUCT”, which is part of PLCopenPlus.

As illustrated below, it makes sense as part of a logical sequence to use the Done output from CamGenerator to

execute Y_CamStructSelect. CamTableID is the ultimate output, used by Y_CamIn in the CamInOut POU.

CamInOut POU

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 57 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

CAM TOOL (SOFTWARE) AND CAMGENERATOR (FUNCTION BLOCK)

Cam generator functions virtually identically to Yaskawa’s Cam Tool software. So if you’ve used CamTool before, it

is to your advantage. In this model, the cam profile is broken into sections and intermediate points are calculated

based on a mathematical curve shape.

Cam Tool was used to create the csv file for the starter program. Itwas set for the master to go up to 12.5664 (one

master cycle in inches) and the slave would go up to 360 degrees. This is what the software screen, “Set Style”

looks like.

In Cam tool we defined just one linear section to the cam profile. This is the linear “1:1” profile that we have been

shifting and engaging. Cam Tool uses a table format. The user enters values for Master End, Follower End, Curve

Shape, and Master Plotting in this “Set Parameter” screen.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 58 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

From these parameters, Cam Tool generates this linear

cam profile, again with just 1 section.

Here are some of the intermediate data points in the

cam table that cam tool generated. These two

columns of master position and slave position were

sent to the controller as a csv file.

The CamData input of CamGenerator contains the

same input parameters from the “set style” window

and “set parameter” window of Cam Tool, and will

generate the same data as Cam Tool. But

CamGenerator saves the data to the CamData output

structure instead of a csv. And of course, it does it all

internally to the controller.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 59 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

ELEMENTS OF THE CAMDATA STRUCTURE

Now let’s compare the data inside the CamData structure to the data in Cam Tool software.

SlaveStart –The first entry of Follower Start Point, which in CamTool automatically defaults to 0.00 and cannot be

changed.

LastSegment – In Cam Tool the “Num” column numbers each segment in the cam profile. CamGenerator requires

that you specifiy the last segment manually. CamTool recognizes the last segment automatically.

Expand the CamParameters and you see it contains an array of

structures.

Each array element corresponds to a row in Cam Tool – the

“Num” column.

Each element of the structure corresponds to a column in the

Cam Tool “Set Parameter” screen.

MasterEnd – “Master End”column in Cam Tool

SlaveEnd – “Follower End Point”column in Cam Tool

CurveType – “Curve Shape” column in Cam Tool. The number

corresponding to each curve type is defined as an enumerated

type in the CamToolbox “CamTypes” datatypes definition. (Blue “Libraries” tab). Good graphical explanations are

listed in the Toolbox Help file under “Cam Toolbox - Creating Cam Tables”

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 60 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

Resolution – “Master Plotting” in Cam Tool

You’ll notice that there is an array element [0] but Cam Tool starts with Num =1. Array element [0] is reserved for

use by CamGenerator and the data in it must be left at 0.00.

NOTE: Different versions of Cam Tool have different text for these columns. Cam

Tool version 4.61 was used in this example.

TableSize

The final input of note is TableSize. This input

can usually be left to the default of 2880.

TableSize is the maximum number of master-

slave pairs that could possibly be generated by

CamGenerator.

If you expand the RunningCamTable in the watch

page and you’ll see that it has memory for up to

2880 master-slave positions.

 In the case that your table requires more than

2880 positions, you would increase the number

on this TableSize input, and also make a change

to the PLCopen Toolbox user library where this

MD_Data array is defined. See the help for more

information.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 61 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PROGRAMMING: INTERNAL CAM TABLE GENERATION

TRAINING ACTION:

 Create a new worksheet named “CamGen” in the Initialize POU to load values into the

G_RunningCamData variable

o Avoid hard-coding any values to the initialization. Build your cam table from existing variables.

For example, instead of 12.5664, use the G_MasterCycle variable.

 Integrate CamGenerator and Y_CamStructSelect

 Run the code. Operation will be identical, but now you have the possibility of creating a slightly different

cam table without loading a separate CSV

o Be sure that CamGenerator and CamStructSelect run without errors

o Look at the data in the watch window to be sure it was loaded

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 62 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PHASE 3 – CAM BLEND

CamBlend solves the following problem: the slave instantly “jerks” into motion when the Y_CamIn block engages

and disengages the cam. This is because the master is already moving. The 1:1 linear cam profile has no position

at which the slave is not moving relative to the master. What if we could use a different cam profile to engage and

disengage the cam smoothly? This is the function of CamBlend.

CamBlend is designed to use 3 different cam profiles

 RampIn

 Running

 RampOut

CamBlend REPLACES the functionality of Y_CamIn and Y_CamOut. Instead of executing Y_CamIn and Y_CamOut,

execute the RampIn and RampOut inputs of CamBlend.

of Master

Cycles

Straight Line

Sl
a

ve
 S

p
ee

d

Master Position Master

Cycle

Master

Cycle

180° 360° StartAngle BDC

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 63 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

Let’s first set up the blocks to calculate and load these profiles. Once that is in place, we can focus on the cam

table calculations for RampIn and RampOut.

TRAINING ACTION

 Create a new LD program POU named “BlendInOut” and run it in the fast task

 Remove CamInOut from the fast task

 Add the CamBlend block to the POU, and attach the master and slave axes

 What variables were originally used to execute CamIn and CamOut? Attach these to the appropriate

inputs of CamBlend

 Attach a global variable named G_CamBlendData to the BlendData input. Be sure the data type is

BlendStruct

 Download changes, then add G_CamBlendData to a new watch tab.

Notice from the help that InSync output of CamBlend turns on only when the running cam profile is active.

Therfore it should not be used in the SFC transition for CamIN. More details are explained later.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 64 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

BLENDDATA STRUCTURE

BlendData is another example of a variable used as VAR_IN_OUT simply for efficient memory use. In practice it is

just a grouping of inputs to the block. You can see the elements of BlendData in the watch window.

RampInTableID, RunningTableID, and RampOutTableID – will be loaded with the TableID numbers from either

Y_CamFileSelect or Y_CamStructSelect function blocks. This is just like the CamTableID input from Y_CamIn, only

there are three tables involved.

RampInSwitchOverPos – The CamMasterShiftedCyclic(1502) position at which the block will switch from camming

to the RampIn table, and start camming to the Running table. These two tables must be created to have an

“overlap” portion, such as a straight-line portion. The master and slave positions near the switch over position

should be identical in all 3 cam tables. This is normally at CamMasterShiftedCyclic(1502) position = zero.

RampOutSwitchOverPos - The CamMasterShiftedCyclic(1502) position at which the block will switch from

camming to the Running table, and start camming to the RampIn table. These two tables must be created to have

an “overlap” portion, such as a straight-line portion. The master and slave positions near the switch over position

should be identical in all 3 cam tables. This is normally at CamMasterShiftedCyclic(1502) position = zero.

Window - Window sets a zone around the switch over position that is valid. Same as the “EngageWindow” input

for Y_CamIn and Y_CamOut. It is set as a percentage of the master cycle. If the task interval is low and the master

speed is fast, it is possible that the program POU does not reliably find a CamMasterShiftedCyclic(1502) position

within this window. Calculation is possible based on maximum master speed and task interval to find the master

distance moved in one scan. If that distance is greater than 1% of the master cycle, then increase the window to

an appropriate value. The default of 1% is usually sufficient.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 65 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PROGRAMMING: CAMBLEND

Set up the CamCalc POU to load CamTableID numbers into the G_CamBlendData elements.

TRAINING ACTION: GENERATE CAM TABLE ID FOR CAMBLEND

 Add CamGenerator and Y_CamStructSelect blocks to CamCalc POU to calculate RampIn, Running, and

RampOut table id numbers.

 The illustration below shows how to accomplish this for the existing RunningTableID. Repeat for RampIn,

and RampOut.

o Use variables named

 G_RampInCamData

 G_RampInCamTable

 G_RampOutCamData

 G_RampOutCamTable

o The CamTableID outputs can feed directly into the G_CamBlendData structure.

At this point we just have empty CamGenerators feeding into the RampInTableID and RampOutTableID of

CamBlend. These cam tables must be generated. A few illustrations on the next page will better explain what’s

going on with CamBlend, the 3 cam tables, and the switch over positions.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 66 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

CAMBLEND ILLUSTRATION

The following illustrations will be used to explain CamBlend by means of a few questions.

Slave Speed (top) shows the general speed profile of the knife. This is basically the same as what has already been

implemented, but with the blend in and out.

These tables show the cam profiles – slave position and master position. These diagrams will be used as reference

to generate the cam tables.

TRAINING ACTION: BLEND QUESTIONS

 Based on the diagram, at what CamMasterShiftedCyclic(1502) position does it “switch over” from RampIn

to Running?

 Based on the diagram, at what CamMasterShiftedCyclic(1502) position does it “switch over” from Running

to RampOut?

of Master

Cycles

Tangent

Blend

Straight Line
Tangent

Blend

Straight Line
Straight Line

Sl
a

ve
 S

p
ee

d

Master Position Master

Cycle

Master

Cycle

Sl
a

ve
 P

o
si

ti
o

n

180°

BDC BDC

180°

BDC-SyncAngle°

CutAngle

360°

0°

180°

180°

C
M

SS
 P

o
si

ti
o

n
 (

1
5

0
2

)

MasterCycle [in]

0°

ShiftEnd[in]

ShiftStart[in]

360° 0° StartAngle

StartAngle

BDC

SyncAngle°

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 67 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

Refer to the previous cam profile illustrations to answer the following questions. The answers contain the

information required to initialize G_RampInCamData and G_RampOutCamData. Give the variable or mathematical

expression when possible.

QUESTIONS: RAMPIN PROFILE

 What is the slave speed at the beginning of the profile?

 What is the slave position at the beginning of the profile?

 What is the slave position at the end of the profile?

 How many “sections” does the profile have?

 What curve type (curve shape) do the “sections” have?

 At what CamMasterShiftedCyclic(1502) position does one “section” stop and the other “section” start?

 What is the slave (knife) position at the end of the “section”?

QUESTIONS: RAMPOUT PROFILE

 What is the slave speed at the beginning of the profile?

 What is the slave position at the beginning of the profile?

 What is the slave position at the end of the profile?

 How many “sections” does the profile have?

 What curve type (curve shape) do the “sections” have?

 At what CamMasterShiftedCyclic(1502) position does one “section” stop and the other “section” start?

 What is the slave (knife) position at the end of the “section”?

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 68 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

CAMBLEND: GENERAL REQUIREMENTS FOR CAM TABLES

Programming with CamBlend requires you to generate the RampIn, Running, and RampOut profiles.

MASTER CYCLE: All cam tables must have the same master cycle. The master cycle is somewhat arbitrary. Set

the cycle equal to a significant distance, such as the circumference of the rotary knife.

SLAVE POSITION: The cam tables will blend smoothly only if the last slave position on one table is the same as

the first slave position on the next table in the blend sequence. Also, within the CamData for each table, slave end

positions in one section of the cam data must be higher than the end position in the previous section. For

example, in a rotary slave axis this affects whether you use 360 or 0. Remember that for a rotary knife, the

position 0 degrees = 360 degrees.

SLAVESTART: CamGenerator allows the slave to start at an arbitrary position instead of forcing the cam to use

slave position zero for the first position like Cam Tool does.

TANGENTBLENDING CURVE TYPE

 A TangentBlending segment may be used in a cam table with ONLY one other StraightLine segment, either before

or after, for a total of exactly 2 segments in the CamData.

TangentBlending assumes a zero start speed if it is the first segment, and a zero end speed if it is the second (and

last) segment in the CamData. This curve type is designed for use with the CamBlend function block.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 69 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

!!! ATTENTION !!!!

There is a KNOWN ISSUE with the

Blend curve type in

Cam_Toolbox_V202, fixed in later

versions.

If you have Cam_Toolbox_V202,

please remove it and use a later

version, if available, or use version

V201, available from the archives in

Yaskawa.com/iectb.

PROGRAMMING: CAMBLEND

TRAINING ACTION: CALCUATE CAM TABLES FOR CAMBLEND

1. Open the Intialize.CamGen worksheet and initialize the remaining G_RampInCamData and

G_RampOutCamData structures

o Avoid the use of literals in the initialization. Most values you need for the cam data have already

been calculated elsewhere in the Initialize POU. For example:

 G_ShiftStart

 G_ShiftEnd

 G_BDC

 G_MasterCYcle

 G_SyncAngle

o Curve Type can be assigned using the Enumerated Type format.

For example

 TB_CurveType#StraightLine

 TB_CurveType#TangentBlending

 A complete list can be found in the CamToolbox Data

Types (Project Tree - Libraries tab) or in Toolbox Help

2. Verify that all three tables calculate with no errors.

3. Force CamBlend to ramp in and ramp out

 Set a parallel contact to “Toggle Boolean”

 Forget about buffering, shifting, and SFC for a minute. Does cam blend work?

4. Integrate CamBlend in place of CamIn and Cam Out.

 Details on the following pages

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 70 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PROGRAMMING: CAM_CONTROL_SFC MODIFICATION

The Cam_Control_SFC program POU uses the variable G_CamInSync in several places. One place is at the

transition between the CamIn step and Dead step. This variable comes from the Y_CamIn_1.InSync output in the

CamInOut program POU, which will no longer be used.

The “equivalent” InSync output of CamBlend is NOT equivalent for the sequential logic. As stated in the help,

CamBlend.InSync=TRUE only when the RunningCam profile is in sync. The transition will therefore remain false

during the entire RampIn profile when the original intention was to proceed to the Dead step as soon as the cam

engages. At slow speeds there is enough time for the controller to scan each transition and handle the next part,

but at high speeds it will not.

One solution is to instead read the CamBlend.BlendStatus output. As the help indicates, this output is 0 when cam

disengaged but 1,2, or 3 to indicates the table in use. This can be used with CamBlend to check for “camming

active” or “camming not active” and for ease of use, keep the existing variable name, G_CamInSync.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 71 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

In the same way, the CamOUT transition must be modified to look for Cam not in sync

Another important point is the CamIn_Position must be calculated differently. Before CamBlend was

implemented, we engage 1 master cycle ahead of time, since the cam engaged at ½ master cycle. CamBlend works

in full master cycles so now we need to increase this to 1.5 master cycles. See Y_CamIn Execution Zone on page

37.

Application Resource Manual
MP2000iec Advanced Programming Workshop #1: Rotary Knife

Page | 72 TRM020-MP2000iec-APW1 | Rev A.06 | March 19, 2013
 © 2013 Yaskawa America, Inc. All Rights Reserved

PERFORMANCE ADJUSTMENTS

The following sections are open-ended and completely optional. When your program application has reached this

point, please informally consult with the instructor and Yaskawa application engineers to explore any of the topics

of interest to you.

MECHATROLINK II SUBINTERPOLATION

Review and implement these concepts. This material is presented in the basic class MPiec and Sigma-5 Application

Programming. PDF of this document is available.

Pn812 = 2 ms (equal to Mlink scan time) – MP2600iec use Pn217

Param 1311 (sub-interpolation filter) = 2 (enable s-curve accel/decal)

TUNING FOR LOW POSITION ERROR

Review and implement these concepts. This material is presented in the basic class MPiec and Sigma-5 Application

Programming. PDF of this document is available.

Use mode 1 (standard)Means Model Following Control is off

Run Advanced Auto-Tuning in SigmaWin+

Param 1310 (controller feed forward) = disabled

Pn109 = 90 (Servopack feed forward level)

SCAN COMPENSATION

The demo can be re-wired to use encoder input from the LIO-01 card (from servopack encoder output on CN-1).

This simulates the situation where the controller does not have control over the master axis and must rely on an

external encoder feedback data from the master instead of the commanded position to the master. I/O scan

delays are incorporated, but scan compensation is effective in predicting the future delay and compensating for it.

E-STOP RECOVERY

CamBlend includes an input called ExecuteStandStill. According to the HELP, “Upon the rising edge, this function

block will prepare to engage the slave to the Running cam profile at the StandStillEngage position (calculated after

an E-Stop recovery routine) in the BlendData structure”.

	Introduction
	Format
	Demo Equipment
	Math and Equations
	Training ActionS
	Training Action

	Application Description: Rotary Knife
	Expected Motion Profile

	Solution approaches
	Three Incorrect Approaches
	The Correct Approach: Electronic Cam
	Solution Approach

	Starter Project
	Setup
	Training Action: Prepare Desktop Demo
	Training Action: Starter Program Overview
	Questions:

	Homing the demo
	Training Action: Home the Desktop Demo

	Cam Engage/Disengage
	Training Action

	Running Cam Profile
	Shift Introduction
	Training Action: Execute “Running Cam Shift”

	Cam Shift Concept overview
	Training Action

	Product Buffer
	Product Buffer Definitions
	TRAINING ACTION:
	Product Buffer Inputs
	ProductBuffer Outputs
	Registration Data Not Used By ProductBuffer

	ProductBuffer Execution
	TRAINING ACTION:

	Product Away
	Training Action:

	Top-Level Sequence
	TRAINING ACTION:

	Product Buffer Quickstart
	First Shift and Engage
	Camming Block Diagram
	Training Action:

	First Shift Simplified Example
	Training Action:
	Training Action:
	Questions – Latch at BDC:

	First Shift Equation
	Training Action

	Y_CamIn Execution Zone
	Questions:

	PITFALL: Sensor Location
	Programming: First Shift and Engage
	Training Action:
	TRAINING ACTION:

	SFC Actions
	Running Shift
	Shift Zone
	Training Action

	Shift Execution Timing: “Within Range”
	Running Shift Calculation
	Training Action:

	Program the RunningShift.
	TRAINING ACTION:

	Last Shift
	Dead Man condition
	Training Action:

	Exe_LastShift
	Phase 1 Conclusion

	Phase 2: Internal Cam Table Generation
	Y_CamStructSelect
	Training Action:

	CamGenerator
	Cam Tool (software) and CamGenerator (function block)
	Elements of the CamData structure
	Programming: Internal Cam Table Generation
	Training Action:

	Phase 3 – Cam Blend
	TRAINING ACTION
	BlendData Structure
	Programming: CamBlend
	TRAINING ACTION: Generate CAm Table ID for CamBlend

	CamBlend Illustration
	Training ACtion: Blend Questions
	Questions: RampIn Profile
	Questions: RampOut profile

	CamBlend: General Requirements for Cam Tables
	Programming: CamBlend
	TRAINING ACTION: Calcuate CAm Tables for CamBlend

	Programming: Cam_Control_SFC Modification

	Performance Adjustments
	Mechatrolink II Subinterpolation
	Tuning for low position error
	Scan Compensation
	E-Stop Recovery

